3.3.11 \(\int x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2 \, dx\) [211]

Optimal. Leaf size=303 \[ \frac {b^2 x \sqrt {d-c^2 d x^2}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d-c^2 d x^2}-\frac {b^2 \sqrt {d-c^2 d x^2} \text {ArcSin}(c x)}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{24 b c^3 \sqrt {1-c^2 x^2}} \]

[Out]

1/64*b^2*x*(-c^2*d*x^2+d)^(1/2)/c^2-1/32*b^2*x^3*(-c^2*d*x^2+d)^(1/2)-1/8*x*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)
^(1/2)/c^2+1/4*x^3*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2-1/64*b^2*arcsin(c*x)*(-c^2*d*x^2+d)^(1/2)/c^3/(-c^
2*x^2+1)^(1/2)+1/8*b*x^2*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/8*b*c*x^4*(a+b*arcsin(c
*x))*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/24*(a+b*arcsin(c*x))^3*(-c^2*d*x^2+d)^(1/2)/b/c^3/(-c^2*x^2+1)^
(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {4783, 4795, 4737, 4723, 327, 222} \begin {gather*} \frac {b x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 c \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{8 c^2}-\frac {b c x^4 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{8 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{24 b c^3 \sqrt {1-c^2 x^2}}-\frac {b^2 \text {ArcSin}(c x) \sqrt {d-c^2 d x^2}}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b^2 x \sqrt {d-c^2 d x^2}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d-c^2 d x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(b^2*x*Sqrt[d - c^2*d*x^2])/(64*c^2) - (b^2*x^3*Sqrt[d - c^2*d*x^2])/32 - (b^2*Sqrt[d - c^2*d*x^2]*ArcSin[c*x]
)/(64*c^3*Sqrt[1 - c^2*x^2]) + (b*x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(8*c*Sqrt[1 - c^2*x^2]) - (b*c*
x^4*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(8*Sqrt[1 - c^2*x^2]) - (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]
)^2)/(8*c^2) + (x^3*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/4 + (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^3)
/(24*b*c^3*Sqrt[1 - c^2*x^2])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rubi steps

\begin {align*} \int x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x^3 \left (a+b \sin ^{-1}(c x)\right ) \, dx}{2 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^4 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{8 c^2 \sqrt {1-c^2 x^2}}+\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{4 c \sqrt {1-c^2 x^2}}+\frac {\left (b^2 c^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {x^4}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}\\ &=-\frac {1}{32} b^2 x^3 \sqrt {d-c^2 d x^2}+\frac {b x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}+\frac {\left (3 b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{32 \sqrt {1-c^2 x^2}}-\frac {\left (b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d-c^2 d x^2}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d-c^2 d x^2}+\frac {b x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}+\frac {\left (3 b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{64 c^2 \sqrt {1-c^2 x^2}}-\frac {\left (b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{16 c^2 \sqrt {1-c^2 x^2}}\\ &=\frac {b^2 x \sqrt {d-c^2 d x^2}}{64 c^2}-\frac {1}{32} b^2 x^3 \sqrt {d-c^2 d x^2}-\frac {b^2 \sqrt {d-c^2 d x^2} \sin ^{-1}(c x)}{64 c^3 \sqrt {1-c^2 x^2}}+\frac {b x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 c \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{8 \sqrt {1-c^2 x^2}}-\frac {x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{8 c^2}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{24 b c^3 \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 246, normalized size = 0.81 \begin {gather*} \frac {\sqrt {d-c^2 d x^2} \left (8 a^3+3 b^3 c x \left (1-2 c^2 x^2\right ) \sqrt {1-c^2 x^2}-24 a b^2 c^2 x^2 \left (-1+c^2 x^2\right )+24 a^2 b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )-3 b \left (-8 a^2+16 a b c x \left (1-2 c^2 x^2\right ) \sqrt {1-c^2 x^2}+b^2 \left (1-8 c^2 x^2+8 c^4 x^4\right )\right ) \text {ArcSin}(c x)+24 b^2 \left (a+b c x \sqrt {1-c^2 x^2} \left (-1+2 c^2 x^2\right )\right ) \text {ArcSin}(c x)^2+8 b^3 \text {ArcSin}(c x)^3\right )}{192 b c^3 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(Sqrt[d - c^2*d*x^2]*(8*a^3 + 3*b^3*c*x*(1 - 2*c^2*x^2)*Sqrt[1 - c^2*x^2] - 24*a*b^2*c^2*x^2*(-1 + c^2*x^2) +
24*a^2*b*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2*x^2) - 3*b*(-8*a^2 + 16*a*b*c*x*(1 - 2*c^2*x^2)*Sqrt[1 - c^2*x^2] +
 b^2*(1 - 8*c^2*x^2 + 8*c^4*x^4))*ArcSin[c*x] + 24*b^2*(a + b*c*x*Sqrt[1 - c^2*x^2]*(-1 + 2*c^2*x^2))*ArcSin[c
*x]^2 + 8*b^3*ArcSin[c*x]^3))/(192*b*c^3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.44, size = 678, normalized size = 2.24

method result size
default \(-\frac {a^{2} x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{4 c^{2} d}+\frac {a^{2} x \sqrt {-c^{2} d \,x^{2}+d}}{8 c^{2}}+\frac {a^{2} d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{8 c^{2} \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{24 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (4 i \arcsin \left (c x \right )+8 \arcsin \left (c x \right )^{2}-1\right )}{512 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}-8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (-4 i \arcsin \left (c x \right )+8 \arcsin \left (c x \right )^{2}-1\right )}{512 c^{3} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{16 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}+8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (8 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}+8 c^{5} x^{5}-8 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}-12 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}+4 c x \right ) \left (-i+4 \arcsin \left (c x \right )\right )}{256 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(678\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

-1/4*a^2*x*(-c^2*d*x^2+d)^(3/2)/c^2/d+1/8*a^2/c^2*x*(-c^2*d*x^2+d)^(1/2)+1/8*a^2/c^2*d/(c^2*d)^(1/2)*arctan((c
^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b^2*(-1/24*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/(c^2*x^2-1)*arcsi
n(c*x)^3+1/512*(-d*(c^2*x^2-1))^(1/2)*(-8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5+8*I*(-c^2*x^2+1)^(1/2)*x^2*c^
2-12*c^3*x^3-I*(-c^2*x^2+1)^(1/2)+4*c*x)*(4*I*arcsin(c*x)+8*arcsin(c*x)^2-1)/c^3/(c^2*x^2-1)+1/512*(-d*(c^2*x^
2-1))^(1/2)*(8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5-8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^3+I*(-c^2*x^2+1)
^(1/2)+4*c*x)*(-4*I*arcsin(c*x)+8*arcsin(c*x)^2-1)/c^3/(c^2*x^2-1))+2*a*b*(-1/16*(-d*(c^2*x^2-1))^(1/2)*(-c^2*
x^2+1)^(1/2)/c^3/(c^2*x^2-1)*arcsin(c*x)^2+1/256*(-d*(c^2*x^2-1))^(1/2)*(-8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5
*x^5+8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^3-I*(-c^2*x^2+1)^(1/2)+4*c*x)*(I+4*arcsin(c*x))/c^3/(c^2*x^2-1)+1
/256*(-d*(c^2*x^2-1))^(1/2)*(8*I*(-c^2*x^2+1)^(1/2)*x^4*c^4+8*c^5*x^5-8*I*(-c^2*x^2+1)^(1/2)*x^2*c^2-12*c^3*x^
3+I*(-c^2*x^2+1)^(1/2)+4*c*x)*(-I+4*arcsin(c*x))/c^3/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

1/8*a^2*(sqrt(-c^2*d*x^2 + d)*x/c^2 - 2*(-c^2*d*x^2 + d)^(3/2)*x/(c^2*d) + sqrt(d)*arcsin(c*x)/c^3) + sqrt(d)*
integrate((b^2*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2*a*b*x^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c
*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral((b^2*x^2*arcsin(c*x)^2 + 2*a*b*x^2*arcsin(c*x) + a^2*x^2)*sqrt(-c^2*d*x^2 + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)^2*x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x^2\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x^2*(a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________